Sharp maximal inequality for martingales and stochastic integrals
نویسندگان
چکیده
منابع مشابه
Sharp Maximal Inequalities for Conditionally Symmetric Martingales and Brownian Motion
Let B = {Bt)t>0 be a standard Brownian motion. For c > 0, k > 0 , let T(c, k) = inî{t > 0: maxs<í Bs cBt > k} , T"(c,k)= inf{r>0: max^, \BS\ c\B,\ > k} . We show that for c > 0 and k > 0, both T(c, k) and T*{c, k) axe finite almost everywhere. Moreover, T(c, k) and T*(c, k) e L if and only if c < pKp 1) for p > 1 , and for all c > 0 when p < 1 . These results have analogues for simple random wa...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولSharp maximal function estimates for multilinear singular integrals
A new proof of a weighted norm inequality for multilinear singular integrals of Calderón-Zygmund type is presented through a more general estimate involving a sharp maximal function. An application is given to the study of certain multilinear commutators.
متن کاملA Sharp Rearrangement Inequality for Fractional Maximal Operator
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of f, M f, by an expression involving the nonincreasing rearrangement of f. This estimate is used to obtain necessary and suucient conditions for the boundedness of M between classical Lorentz spaces.
متن کاملFreedman’s Inequality for Matrix Martingales
Freedman’s inequality is a martingale counterpart to Bernstein’s inequality. This result shows that the large-deviation behavior of a martingale is controlled by the predictable quadratic variation and a uniform upper bound for the martingale difference sequence. Oliveira has recently established a natural extension of Freedman’s inequality that provides tail bounds for the maximum singular val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2009
ISSN: 1083-589X
DOI: 10.1214/ecp.v14-1438